Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by scarring of the lungs, making them broader and more rigid. The eventually fatal disease manifests in continually deteriorating shortness of breath, resulting in inefficient levels of oxygen to fuel the brain and other vital organs.

There’s currently no cure for IPF, or known reason behind the ailment’s affliction.

But thanks to new stem cell research conducted at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, patients with the incurable disease may have hope on the horizon.The UCLA research team successfully created three-dimensional lung ‘organoids’, coating tiny gel beads with lung-derived stem cells which self-assembled into the air sac shapes found in human lungs.

These 3D lungs aren’t designed as a transplant alternative to the real thing; these tiny organoids will be used to study lung diseases like IPF. IPF has been traditionally tricky to analyze using conventional methods. Cultivating the plagued lungs on flat surfaces oddly shows the cells as perfectly healthy.”While we haven’t built a fully functional lung, we’ve been able to take lung cells and place them in the correct geometrical spacing and pattern to mimic a human lung,” said Dr. Brigitte Gomperts, the study’s lead author and associate professor of pediatric hematology at UCLA.

How Were These Stem Cell Lungs Created?

Gomperts and her team began with stem cells generated from cells of adult human lungs. Those cells were then taken and coated over sticky hydrogel beads, partitioning the beads into small wells seven millimeters across.

After portioning out the beads and cells, lung cells began growing around the beads in each individual well. They started to link, and slowly formed an evenly distributed three-dimensional pattern. The researchers evaluated their lab-grown tissue, comparing the organoids to real sections of a human lung.”The technique is very simple,” said Dan Wilkinson, a graduate student and the study’s first author. “We can make thousands of reproducible pieces of tissue that resemble lung and contain patient-specific cells.”

Perhaps the most cutting-edge difference in using these 3D organoids to study lung diseases is the ability to add molecular factors, causing the lab-grown lungs to present similar symptoms as a real lung with said disease. For example, adding the molecular factors to recreate lungs with idiopathic pulmonary fibrosis will show the same scarring found in real human lungs with the affliction.”Scientists have really not been able to model lung scarring in a dish,” says Gomperts. It’s that inability to replicate idiopathic pulmonary fibrosis in the laboratory that makes biological studies difficult, as well as devising potential treatments.

Now, using these new lung organoids, scientists can easily examine the biological underpinnings of lung diseases, including idiopathic pulmonary fibrosis, as well as test for treatments for other lung ailments.A researcher can study an individual’s disease specifically with this stem cell technology. A clinician can collect the cells from that person, convert them to stem cells, differentiate them further into lung cells, then use those to create the 3-D cultures. From there, a clinician would have the flexibility to study the individual case, or test what drugs might be most effective by conducting them on the lab lung first.

And with the ability to create multiple small organoids at the same time, multiple drugs and treatments could be tested simultaneously maybe one that will finally address IPF.”This is the basis for precision medicine and personalized treatments,” Gomperts said.

For a full breakdown of the UCLA research team’s study, their resear ch and conclusions were published in the journal Stem Cells Translational Medicine.RegenerVate specializes in the treatment of musculoskeletal disorders using stem cell and other regenerative injections. For further information see, or call 1 855 847 3975, or email